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L1    ZSjotal Reflection of Waves from a Point Source* 

By EDWARD GERJUOY 
Nme York Untoer«irrt 

I. Introduction 

In this paper an analysis is made of the reflection of a pulse of sound from 
anoint source in a non-absorbing liquid plane boundary, under the circumstance 
that the index of refraction is < 1. The analysis is equally applicable to the 
total reflection of electromagnetic radiation from a vertical dipole, in the absence 
of absorption. The results clarify the mechanism of propagation of the head 
wave which has been observed in acoustic experiments. It is shown without 
approximation that % pulse is received in the first medium at a time correspond- 
ing to propagation along the surface with wave velocity of the second medium. 

Under certain circumstances a pole in the complex plane of integration 
makes a contribution to the field at long distances. However the pole always 
lies on the imaginary axis for non-absorbing media, giving rise to an exponen- 
tially decreasing term at long distances. Thus no true (undamped) surface 
waves can occur. The contribution from this pole is absent in the electro- 
magnetic case when, as is usual, the magnetic permeabilities of the two media 
are equal. 

* 

r midium~i~   p   e 

Fiocss 1 

Figure 1 shows a point source at P, a height h above an infinite plane 

•Contribution from the 8cripps Institute of Oceanography.   This work represents one of 
the results of research earned out under contract with the Bureau of Ships, Navy Depart meat 

fPresent address: Department of Physios, University of Pittsburgh. 
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surface separating two non-absorbing media. The wave velocity is greater in 
medium 2 than in medium 1. The signal is received at S, a height z above the 
bounding surface. 

Let the source be harmonic, of circular frequency u. In the acoustic case, 
when both media are liquids, the acoustic potentials $i and fe satisfy in their 
respective media 

A*, 4- *!*, = 0, 
(1) 

A*, + *•*, - 0 

with the boundary conditions, on the plane t — 0 

(2) 

dt       dt' 

In these equations p denotes density, c wave velocity, and Jb — u/e. 
In the electromagnetic case, when both media are non-conducting, and the 

source is a vertical dipok, the Herts potentials r, and *s satisfy [1] 

A», 4- *V, - 0, 
(3) 

Ar, + **r, « 0 

with the boundary conditions, on the plane t — 0 

it!       *; 
P-i Mi 

(4) 
ihri dx9 

dt dt 

In equation (4) p is the magnetic permeability. It will be noticed that when 
Mi " Mi the electromagnetic problem is less general than the acoustic, since the 
ratio of the coefficients of », and x, in the first of equations (4) m 4?/fcJ — ej/c?, 
whereas pi/p» is independent of c,/ci. 

The field in medium 2 has been discussed previously [2], in this paper the 
field in medium 1 will be analysed. In the main our results confirm those of 
previous investigators [3] but some new features are introduced, to wit: (/) 
The time of arrival of a pulse is evaluated exactly, and shown to agree with the 
conclusions inferred from the approximate evaluation of the field from a harmonic 
source. (S) The validity of the method of steepest descents in this problem is 
examined by evaluating the next higher approximation, and a number of the 
conditions for the validity of the method are shown to have simple and natural 
physical interpretations.   The amplitude dependence of the head wave in also 
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given a simple geometrical interpretation. The head wave denotes the wave 
which in the region of total reflection arrives before the reflected wave, and may 
arrive before the directly transmitted wave.1 (5) Under certain circumstances 
a pole lying on the imaginary axis in the complex plane of integration makes a 
contribution to the field, yielding an exponentially damped wave at long dis- 
tances in medium 1. The circumstances are such that the pole makes no contri- 
bution in the electromagnetic case when MI *• Mi* The contribution of this pole 
does not seem to have been previously remarked.* 

II. Notation and Basic Formulas 

We employ our previous notation: the acoustic potential at S (Figure 1) 
with the coordinates (x,y,t) is 

(5) »,-* + «,-Wp**,*>+»,, 

R is the distance PS (Figure 1), and the reflected wave $r is 

(6) 4>r ~ tfc, [   du    , U     , /,Jo(*,ru) exp {#,(* + h)Vl -u*\, 
Jo        VI — w 

In equations (6) and (7), r — (x* + y*)ir%, a «• e,/c, is assumed <1, 0 equals 
PS/PI (acoustic) or A-IO-YMI (electromagnetic), and may have any positive value. 
Equation (7) for the reflection coefficient /, is equation (10) of reference 2. 
Equation (6) follows readily from equation (6) of reference 2 by the procedure 
used to obtain equation (13) of reference 2. Details of the derivation of equa- 
tion (6) are also given by Ott [3]. The correct behavior of the solution at in- 
finity in either medium is guaranteed by choosing VaJ — u* and  y/\ — u* 

•3uch early arriving wave* have been observed in geophysical prospecting by explosive 
sounds (cf. M-jbkat, ref. 3), and, in underwater propagation by J. L. Worsel and M. Ewing, 
EzpUmon Bound* in thaUow water, Geol. 8oc. of Am., Memoir 27, 1948. 

•Of the authors hsted in reference 3, Lamb solved not the problem under consideration 
here, but some related problems. Jeffreys uses operational methods throughout Muakat 
obtained a valid formal solution, but evaluated the resultant integrals by means of a relatively 
crude approximation. Ott's analysis parallels our own but be does not follow the steepest 
descent contours in the complex plane with the care which we have used. In easenoe our 
evaluation of the integrals confirms Ott's results, but extends them by including the small but 
theoretically interesting contributions from the pole. Kruger evaluated the integrals without 
using the method of steepest descents, for the electromagnetic case. However, his analysis 
is immediately applicable to total reflection only when h - 0, and uses the restrictive assump- 
tion that MI •* jn . Brehovskih's work, in Russian, seems to parallel ours, but he makes no 
mention of the pcle. 
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positive real for small positive u and positive imaginary for large positive u. 
The choice of sign is achieved by drawing the cuts through a and 1 upward, as 
shown in Figure 2. It will prove convenient to draw the cuts through —a and 
— 1 downward as shown; for the purposes of this section their directions arc 
not significant. The contour of equation (6) runs from 0 to « on the real axis 
without crossing any of the cuts.   For z+h > 0 

(8) 

exp \ik>V?~+~(z + h)'\ 
V? + (* + h)' 

[' dt -4==^ JM «p (-(* + h) V7~^ 
Jo        Vf - k* 

it!}. 

FlOPKE 2 

Equation (8) is well known; it implies that the real part of y/f — k\ is always 
>0 on the contour, (cf. St rat ten (oj) or equivalently, that the contour passes 
below the singularity at t — kx (cf. Watson [6]). Letting t — kxu in equation 
(8), remembering kx > 0, and noting that Vu* -*• 1 » —» Vl — u* is con- 
sistent with the definitions of the signs of the radicals in equations (6) and (8), 
it can be seen that 

m 

(10) 

(ID 

& 

*. 

*• 

*,+*.+*., 
etM l"/3(g + h)/d - V?~^?~\ 
d   |_0(* + h)/d + Va  - r%S 

20;, [   du    7 =     , F(u) Joforu) exp {(*,(* + h)y/T 
Jo        vl — u 

V), 
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,12v p( x W - T* __ Va* - u* 

(13) d = Vr2 + (* + h)' ,       r-r/d,       VT^7i » *-±i 

The distance between the receiver and the image of the source is d = P'S 
(Figure 1); r is the 3ine of the angle of incidence TPP' (Figure 1). In equation 
(7) u equals the sine of the angle of incidence (see [2]); equations (6) and (11) 
are integrals over real and complex angles of incidence. The amplitude and 
phase of $. are precisely those expected for z spherical wave propagating along 
the tjeometrically reflected ray PTS (Figure 1), if we assume this wave to be 
reflected with the plane wave coefficient of equation (7), with u •= T. The sign 
of Va*— r* is identical with that of Va2 — u* when u = r. We infer therefore 
that all deviations from ray or geometrical propagation are contained* in the 
term 4>, . 

The poles of the integrand of equation (11) lie at the roots of 

(14) 0 Vl - u* + Va   - u* = 0 

or at 

u - ±(§r^Tifn
t        1 < 0, 

<0<l, 

In that part of the complex plane which is above the real axis, we denote 
by I the region to the left of the cut at a, by II the region between the cuts at 
a and 1, and by III the region to the right cf the cut at 1. Since the cuts may 
(and will later) be drawn so that they intersect the positive imaginary axis, we 
further distinguish between region I, , containing those points in region I which 
lie in the first quadrant of the complex plane, and I, , containing those points 
in region I which he in the second quadrant, and similarly for regions II and 
III. The fourth quadrant is designated by IV. Some of these regions are 
shown in Figure 2. In regions I,, I, , II, , III, , and IV the real and imaginary 
parts of (1 - u,),/*, (a* - i**)"", and u/(l - u*)l/t are negative in the following 

Thia formulation, in which *>, - 0 in the geometrical limit kt -»* appears more logical 
than the customary procedure of ignoring the dependence on a, 0, and angle of incidence of the 
reflection coefficient, whereby the field in medium 1 is regarded as the sum of spherical waves 
radiating from sources of equal strength at f and P' (Figure 1), phis a contour integral, which 
integral is not sero in the geometrical limit   Cf. Stratton, op. til., p. 573 ff., or Ott, op. tit. 
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regions: 

(10) 

(Re (1 - it7)"7 < 0 

em (1 - uy/3 < 0 

(Re (a* - u*)'" < 0 

III 

I., II, 

II. ,N-. III, 

I«, Ha 

I., H., III, 
Ill ,iv , 

6m (a' - u9)ut < 0: 

(Reu/(1 -u*)u% <0: 

Smu/(\ - u*)xn < 0: 

Otherwise they are positive. The real and imaginary parts of the radicals 
change sign discontinuously at the cuts but become zero on the real or on the im- 
aginary axis if they change sign crossing it. 

Equation* (16) show there are no roots of equation (14) in region IV.   Con- 
sequently, as shown for similar integrals by Muskat and Ott [3] we obtain 

u 
(17)      <t>, - ikt / du     — 

Jc      VI — u 
F(u)^"(fc,ru) exn \ikx(z + h)Vl - u'\ 

The contour C of equation (17) runs from t*» to » on the real axis, as shown in 
Figure 2.   Replacing ffi" by its asymptotic expansion, equation (17) becomes 

(18) *, - (^)"V"4 / dJ(j^fnm exp |*M(u)}, 

(19) A(u) = (* + *) VT^u* + ru. 

In equation (17) — T < arg u < w. To prevent circling the singularity at the 
origin, the cut at —a is extended to the origin along the negative real axis as 
indicated by the stippling in Figure 2. 

We evaluate $, , equation (18), by the method of steepest descents.* There 
are two distinct cases: r < a, considered in the immediately following section 
ard T > a, which is deferred to section IV. 

III. Solution for x < a 

The saddle points of the integral (18) lie at the roots u 
tion A'(u) - 0, with 

(z ± h)u 

±r of the equa- 

(20) A'(u) =r- vT=7' 
We shall be concerned only with the point u •* T, which for r < a lies in I, . 
A(u) is pure real on the real axis between 0 and 1, and, in I, , has a maximum 
at u " T.   Along the contour (Re A(u) -» A(r) through u — r in I, , im A(u) 

'Watson, op. cit., p. 2. 
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can have no maxima and but a single minimum, at u - r. Evaluation of 4>, , 
equation (18), by the method of steepest descents now proceeds in the usual way. 
To completely justify the analysis however it is necessary* to make sure that it 
is possible to deform the contour C of Figure 2 into the contour (Re A(u) •» A(r) 
passing through u *» r in I, . 

The argument required is similar to that employed previously. Use is 
made of equations (16) and (20), together with the remark that the contour 
is parallel to the imaginary (real) axis if and only if A'(u) is pure real (imaginary). 
If u - pe'*, then in IIIj and IV, for large p 

(21) A(u) - p[[r cos $ - (» + h) sin 6] + i[(* + h) cos 9 + rsin 6)\ 

while in I, and I, , fcr large p 

(22) A(u) - p{[r cos 9 + (* + h) sin 0} + t[rsin B - (r + h) cos »]}. 

It can be seen from equation (16) that the only roots of equation (14) which can 
possibly concern us lie in region II. We can conclude that the contour C can 
be deformed into the contour (Re A(u) — A(r), which we denote by C (Figure 3), 
without crossing any poles. 

We recall that u is to be interpreted as the sine of the angle of incidence of 
an arbitrary ray from the source.   The equation u — T for the saddle point of 

FIGURE 3 

equation (18) corresponds therefore to the assertion that the deviations from 
ray propagation arc in this case, r < a, determined primarily by radiation along 
the direction of the expected geometrical path. This interpretation is confirmed 
by the fact that exp [iktAir)} - exp jt'M) is a phase factor common to 4>. , 
equation (10), and to this estimate of <t>, .   Moreover since F(u) = 0 at u = T, 

*Thia point has not always been sufficiently emphasised. 
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6, is seen to t* small compared to <t>, (in the limit of high frequencies and large 
distances, where the method of steepest descents is applicable). These results 
are in complete agreement with those of Ott [3]. 

IV. Solution for x > a 

When T > o it is necessary to deform the contour into the shape C» followed 
by C% of Figure 4 in order to obtain a convergent contour integral through the 
saddle point u =» r.   We write 

(23) *, = *.(C,) + *,(C,) 

where <p, is given by equation (17), and both fiiC^ and 4,(Ct) are given by 
equation (17) with the substitution of Ct or C, for C. Replacing H£u by its 
asymptotic expansion, *,(C9) is given by equation (18) with C, instead of C. 

Fiou&x 4 

Since \Za2 — u* does not occur in A(u) the argument in the preceding section 
concerning the determination of the contour (He A(u) = A(T) is wholly un- 
changed, except for the fact that the contour extends to infinity on the left in 
IIa instead of I». The only question to be settled is whether deformation of the 
contour requires crossing any of the poles in II. This question will be considered 
below. Except for possible contributions from poles in II the integral <£,(C2) 
is «*»n to yield precisely the same results as did <2>, in the preceding action. The 
contour into which C, is deformed is termed C». 

We proceed to $i(C,): The first term in F(u), equation (12), is merely a 
constant. Referring to equation (17) and to Figure 4, it is evident that in $,(C,) 
the contour C, can be closed at infinity for this first tenninF(u), since the integral 
containing this term contains no terms involving y/a* — u'. Nor does it contain 
any poles.   Consequently the first term in F(u) results in a vanishing integral 
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and we have 

*.(C,) - -ikt /   du     .——8 -   .. ° —% i 
•>c,        VI -«  jJVl - «   +  Va   - U 

(24) _ 
• exp {{*,(* + h) W- u2}/7j"(Jfc,ru). 

In'll, the contour C, lies along the cut. The contour C, can be deformed so as 
to lie along the cut in I,, since there are no poles in I,. Because the integrand in 
equation (24) vanishes sJt,u**a the integral around a small circle about u «- a 
is zero.   It follows that 

(25) ^ " -**' L dU W(l - u>) -~(a> - u>) 
• exp {{*,(« 4- h) vT^?}i/i"(fcJru). 

In equation (25) the- contour C» runs in IIt along the cut, starting at u ** a 
and going to infinity. 

We desire the "beat" contour for the branch line integral $i(C,); namely 
a contour which appears likely to minimize the error. Although no saddle 
point can be found for $.(C,), it is very reasonable to deform C, into a contour 
along which the phase of the integrand remains constant. Such a steepest 
descent contour, whether or not it passes through a saddle point, still seems 
least likely to introduce complicating cancellations and reinforcements, par- 
ticularly in the large klr limit (in which we are ultimately going to be most 
interested). 

Consequently an approximate expression for 4>,(C,) is obtained much as 
before by replacing H"} in equation (25) by its asymptotic expansion, and 
determining the contour (Re A (u) =• ,4 (a) into which the cut through a must be 
deformed. Only if this deformation of the contour requires crossing any of the 
poles in II must their contributions be considered.* The contour (Re A (it) •» A(a), 
which we term C[, is shown in Figure 5 where the cut through a has been de- 
formed so that it coincides with C[ . The deformation w justified as in the 
preceding section. The integral along C[ is computed, as in the method of 
steepest descents, by expanding the integrand about the point u — a. The 
final result is an expressou for the head wave: 

(26) <f>,(Ci) 

and 

(27) 

2crt e"1* 
*,/3(l - **),/4 rl/*[r(l - aT' - (z + /»«r 

* -(z + A)VT - a* 4- m. 

•It is definitely not correct to try to evaluate the integral along an arbitrary contour 
between a and «. The mrao.t value of the integral is independent of the choice of contour, of 
course. But because the integral is not evaluated exactly, the estimated value of the integral 
can depend on the choice of contour, as apparently ' appens in the Sommerfeld problem. 
T. Kahan and O. Eckart, Jour. Phys. Had., 10, 165 (1949) and Phya Rev., 78, 406 (1049). 



82 EDWARD OERJUOY 

Equation (26) shows that in the limit of high frequencies and large distances the 
amplitude of $,(C,') is small compared to 0. , equation (10). This was to be 
expected, since $,(C,') is part of the deviation from geometrical propagation. 

We return to the problem of whether or not poles are crossed. It is apparent 
from the above discussion that we might just as well have deformed the contours 
to C[ and C* before replacing //"' by its asymptotic expansion. Figure 5 
illustrates some intermediate stages in the deformation of the contour C of 
Figure 2 into integrals along C( and C, and shows the cut* through u = -~a and 
u -» 1. The contour C[ coincides with the cut through a and is drawn stippled, 
as is the cut from u « —a to u «• 0. The portion of CJ to the left of u — T is 
also shown. Regions I, and I, lie below and to the left of C, . In Figure 5 the 
contour C has been bent around into region II between C{ and C,, but has not 
yet been extended to infinity. The dotted line is a deformation of C which 
has not crossed the imaginary axis. 

*, 

FlOTTRK 5 

Referring to equation (15) it is clear that if 1 < 0 it is possible to extend 
to C in Figure 2 to the dotted C in Figure 5 to the solid C in Figure 5 and so on 
to infinity in II,, without crossing any poles. When /3 < a the poles he on the 
real axis between —a and a in region II. Thus C can again be deformed to 
infinity in II without crossing a pole. For a < 0 < 1 the poles lie on the im- 
aginary axis; the only root of significance is the positive imaginary root in II. 
Let u — t'j/i (iyt) at the intersection of C[ (Ci) with the imaginary axis. If the 
pole lies at y, > yt (Figure 5), the contour can obviously be deformed from the 
dotted C to the solid C without crossing the pole, and so on to infinity. If the 
ordinate of the pole is <yt , the pole lies below the cut C[ , and is again never 
crossed. The only case that remains is a < /3 < 1, y, < y, < y,, as illustrated 
in Figure 5.   In this case the contour cannot be extended from the dotted C to 
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the solid C without crossing the pole, so that to the integral along the solid C 
must be added the integral around the closed loop surrounding y, ; this integral 
readily yields 

*,(p) - iikj {! ~ ff'"» exp {{*,[(* + /OU - a*)"70 ~ l3*),/,]l 
(28) (1 " * } 

4>,(p) is the contribution from the pole and in this case where a < 8 < 1, 
Vi < y, < Va we have 

(29) 4,(0 - *,(p) + «,(C0 

where $,(C() is still given by equation (20). In equation (28), K0 is the modified 
Hankel function.   The condition yx < y, < y, can be written as 

(S0) (I_ar.+r^.<(i^y<i^_. 
We have been unable to interpret <j>,(p) physically.   Since for large z 

(3D K0(x) ~ (£f e~ 

4>,(p) decreases exponentially for large r, and therefore can hardly be interpreted 
as a surface wave in this problem which neglects absorption, despite the r~>/a 

spreading factor inferred from equations (28) and (31). It is likely that at large 
distances the magnitude of 4>,(p) is small compared to the error made in deriving 
equation (26). It is possible that <t>i(p) is a portion of the difference between the 
accurate and asymptotic value of $((C,), or it may be a spurious result of the 
analysis. All that can be said is that our choice of "best" contour C[ leads 
naturally to 4>,(p) when a < 8 < 1 and equation (30) is satisfied. In the electro- 
magnetic case when pi — p* , we have 8 = a, so that a < 8 < 1 is not possible 
under these circumstances. 

V. Geometrical Interpretation 

In this section we assume the head wave propagates from P to S along the 
path PABS (Figure 1) with velocity c, along A B, and show that this assumption 
leads to simple geometrical interpretations of the results of the preceding sections. 

In Figure 1 

(32) AB - r -  fr + h\ . 
Vl -«* 

Muskat [3] has pointed out that the phase difference between P and S corresponds 
to the assumed propagation, i.e., referring to Figure 1, that 

(33) kx(PA) + akt{AB) + *,(BS) - *,* 
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holds with ^ given by equation (27). He also remarks that PABS is a path of 
least time, in the sense of Fermat's principle. The surfaces of constant phase 
}f> •» constant intersect the z.z-plane of Figure 1 in lines parallel to USW and 
perpendicular to BS. The wave fronts, obtained by rotating USW about the 
z-axis, are obviously cones with axis OP. These cones have an angle — %CSW — 
the complement of the critical angle. 

Consider the two neighboring rays BS and B'S' intersecting the wave 
front USW (Figure 6).   Rotate the section BSS'B' about OP.   All the energy 

w    w 

medium t 

Fioon 6 

lying within the volume formed thereby which in unit time crosses the surface 
formed by rotating SS' ultimately crosses the surface formed by rotating VV, 
V and V being intersections of BS and B'S' with the neighboring plane of 
constant phase U'VW. Calling the pressure at S p{r^) and at V p(r+drj+dz) 
and noting that 55' = VV we have 

(34) 2*rp*(r, z) - 2w{r + dr)p\r + drj + dt). 

Equation (34) implies that for points on the same ray BS, p is proportional to 
and independent of t.   This is precisely the result yielded by equation -1/3 

-1/1   -1/1 (26) from which, using equation (32), $»(C() is proportional to (AB) 
Clearly equation (26) becomes grossly inaccurate7 as AB approaches zero 

length, since the solution must be finite at all points other than P. In Figure 
6, S" is a point in the field receiving the head wave via the ray B"S". B"M is 
the wave front starting at B". It terminates abruptly at M, since the critical 
ray PA is reflected into AML and since there is no refracted wave along the 
surface to contribute to the head wave at points on the surface closer to the 
origin 0 than A. We may expect our assumption of propagation along PABS 
to be valid, and equation (26) to be a good approximation, as long as B"M 
subtends a large number of Fresnel zones constructed from point S".   In other 

"Brehovekih, see (3], by a different method obtained instead of equation (28) a modified 
expression which he claims accurately represents•i(C,') for small or sero values of AB. 
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words it is necessary that 

(35) S"M ~ S"B" » 1 

when S"B" » MB"\ equation (3-5) simplifies to 

(36) (1 - afyAB)' » 2X2/Vl -a*. 

Equation (26) is the leading term in an asymptotic expansion of 4i(Ct), 
presumably valid in the bin:'., as kxr —»». For finite fc,r the ratio of the next 
term in the asymptotic expansion to the leading term, equation (26), furnishes 
an estimate of the error made in using eoua ion (26) to represent the head wave. 

(37) W'fcnO - (;£-)'" cxp |,C„ - ,/4)|(l + g£j 

where | A | < 1. If in equation (25), we ignore the term in A, introduce the new 
variable 17 which runs from 0 to « as « traverses C" from a to <•», and expand 
the terms in the integrand exclusive of the exponential terms in a power series, 
we obtain 

*.(CJ   =   xl/,^(1   _   ay/t ^^j   _  a?)l/,   _   (2  ~  ^p 

(38) . 
• /    «l,e-'»'V/,(l + »>«+ '••). 

The leading term in equation (38) yields equation (26). In equation (38) 
& — ]£< i, ,j — 1 to 4, where the it are defined as follows:  Forj — 1 to 3, 

(39) Q, = B,[l + i,ft) + •••] 

the functions Q, , j - 1 to 3, being respectively U1", [0*(l-u*) - (a'-u*)]"1, 
and —idu/di).   i« is defined by 

(40) («« - i**)1" - W[l + a4fa) -f • - •]. 

In equations (39) and (40) the B, ,j ~ 1 to 4, are numerical coefficients. 
In equation (38) the absolute value of the rat 'o of the term in 5 to the leading 

term is 35/(2fc,<f), which must be «1 if equation (26) is to be accurate. The 
expression 35/(2fc,tf) where two or more of the 35,/(2fc,d) are large can sometimes 
be made «1 by cancellation; such cancellation is seldom possible in the omitted 
term of equation (38), of order v* in the integrand, whose ratio to the leading 
term will be -«-S*(&,d)*. We ronclude therefore that it is probably tieceasary 
that each of the 3Sl/(2kld) be «1, in order that equation (26) be accurate. 

The inequality corresponding to j = 3 is 

(41) 575— lM/*i. i 2(1 -oT'ib.GlB)'^1, 

•W»taon, op. at., p. 219. 



86 EDWARD  GERJUOY 

It is a confirmation of our geometrical interpretation that equation (41) is 
equivalent to equation (36). Apparently the geometrical approximations in- 
volved in deriving equation (36) implied z » h. That the right hand side of 
equation (36) should depend on (z -f h) can be inferred from equations (6) and 
(11) which show that $, and <£, are functions of z and h only through the sum 
(* + h). 

We may add that in equetion (25) the contribution of the term in A can 
be estimated by expending that term in a power series about u — a, leading to 
the inequality Bktra »1, a typical condition for the validity of geometrical 
propagation.   Some of the inequalities Z6,/(2k,d) «1 imply 

(42) JOT5*1- 
We have not interpreted equation (42). It can be inferred from 3£//(2&(rf) « ! 
that (1 — a*) and 0 must not be too close to zero, conditions to be expected 
from equation (26), since 4>((C,) cannot increase indefinitely as (1—a9) and 0 
approach zero. 

VI. Solution for Complex o) 

To this point we have been concerned with positive real fc, and kt . To 
determine the received signal resulting from a pulse, we require the solutions for 
<y>mnl«»v VAIMM of <* where im u> > 0. We retain ik, — w/ct , fc» — u/c,, ct and 
<h real. The previously adopted means of obtaining the solution, based on the 
expansion of e%k*/R in plane waves as first used by Weyl {7], would in the present 
case* involve divergent integrals. We can follow Sommerfeld [8] however; 
by analytic continuation it can be seen that equation (8) is correct with 
(h + z) > 0, in the extended range r > 0, 8m Jfc, > 0, where (Re y/t* — k7, > 0. 
The value of y/t3 — fc1 at points f < k\, Jr, real, is determined by continuation 
of y/t* — k* from the upper half plane 8m kx > 0. We note that (Re Vt1 — h* 
cannot change sign, as kt is varied continuously for fixed I, unless tm kt becomes 
zero, and that the integral therefore converges, with VT~t! as defined, for 
r « 0 and/or k, — 0. 

Using equation (8), with (h — z) replacing (h + z), so as to represent 4>0, 
equation (5), we can, as does Sommerfeld, obtain a solution for complex fc, . In 
fact, letting t — k<u in equation (8) and the other relevant integrals, the solution 
in medium 1 is given by equations (5) and (9)-(13), except that the contour for 
4>, , equation (11), now runs from 0 to » along the line arg u » —arg fc, . The 
cuts through u = 1 and v. — a, formerly through t = fct and akt , approach 
infinity along arg u — (T/2) — arg fci.  The cuts through u — — 1 and u — — a, 

The plane wave expansion of «'**//? appears to us to involve divergent integrals in 
medium 2 whenever kt is complex even with real kt . When kt is complex, for any z and y, 
there are values of the azimuth angle 4> in equation (12) of reference 2 for which the integrand 
becomes infinite as $ approaches its upper limit of x/2 —»'<=. This difficulty does not seem to 
have been remarked by later writers, e.g. Ott. 
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which were downward in the £-plane, approach infinity alo.ig arg u — — (T/2) 

— arg kx. With these provisos, equation (11) can be seen to represent an analytic 
function of fc, in the entire range im k, > 0; as always, k, •» ak%, a < 1. This 
result is most important. Knowing the solutions are analytic functions of fc, 
enables us, as in the next section, to extend integrals over u< into the complex 
u>-plane. If fc, — pe"', 0 < 8 < r, the behavior of $, , equation (11), for fixed r 
and 2 as p —+<*> is determined by exp {— p(ft-r-z)[sin 8 (Re Vl — us + cos 8 
im Vl — u2]). The signs of (Re vl-i? and im Vl — u* are found by 
analytic continuation of their values in equation (16), as the cuts of Figure 2 
are rotated clockwise. It follows that sin 8 (Re Vl — u* + cos 0 dm Vl — w* 
is positive for all u on the contour arg u — —arg &, , and consequent!;'- that 
equation (11) approaches zero exponentially as | kx \ -*<*>hQ < arg kx < «•. 
Moreover, for kt real, it can be seen that $,(—kx) — [^.(A:,)], the bar denoting 
complex conjugate. This result was of course to be expected since $0(—k) — 
*o(fc) and the differential operator A* + k\ is real for real k, . 

Using Cauchy's theorem, we may now infer rigorously the result that if 
a > 0, 6 > 0, 

(43) 4>,(-a + ib) m 4,,(a + ib). 

We write 

(44) •>,(*,) - 2- ] —^ , 

the contour being the real axis from -» to «> and then around the circle at 
infinity in the positive kt m /f-plane. Equation (44) is justified by our demon- 
stration that <t>, is analytic in the domain, and equation (43) follows at once if 
we not•; that the integral over the circle at infinity vanishes since <f>, has been 
shown to become zero exponentially on this circle. 

The form of the solution so far obtained is awkward. It is more convenient 
to introduce 2J0 «• H{

0
U + H{

0
3) as in Section II. This is not possible if r — 0 

since H'o
u(0) is not defined. Restricting ourselves to values10 of r > 0, it is then 

easy to shew using H^ikxru) — —//"'(A:, rue") that equation (17) remains 
valid and is an analytic function of A:, , provided the contour C of equation (17) 
runs from infinity to the origin along the line arg u = T — arg fc,, and then from 
the origin to infinity along the line arg u = — arg fc, . The limits within which 
the contour can be deformed can be inferred from equations (21) and (22), 
which remain valid, provided 8 is interpreted as arg kxu instead of arg u. In 
III, and IV then, the integrand approaches zero exponentially as u —•• if 

'•Obvioudly, in justifying equation (17) (cf. Section II) we should have stated that r > 0 
but the fact that our formulas involving HQ' are not valid for r — 0 is of little moment. It is 
important howevjr that a valid solution from which the fields at r - 0 can be evaluated for 
any kt is available (in principle, at any rate), that the analysis for r > 0 yields formulas which 
can be understood and used almost everywhere, and that there is no reason either from the 
physical properties or from the appearance of the formal solution to expect unusual results on 
the line r - 0 
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(2 + h) cos 6 + r sin 6 > 0, or it may be deformed from its original arg fc,tt « 0 
anywhere within the limits 

(45) -tan"1 '-^ <argjt,+argu<ir- tan-1 *-^. 

In Ij we have from equation (22) 

(4«) tan    —-— < arg k, + arg u < w + tan    —'—. 

In equations (45) and (46) 

0 < tan      < r. r 2 

The inequalities hold up to and including the limits; i.e., < is correct, if | fc, | > 0, 
as can be seen by substituting the values of arg kxu at the limits in equations 
(21) and (22). It will be found that (Re A (u) is not zero at these values of arg k,u, 
so that equation (17) converges as p —* <*>. 

These results will be used in the following section. 

VII. Reception of a Pulse 

Suppose the wave radiated by the source at P (Figure 1) is given by 

(47) *•»-5 >('-*) 

where R is the distance PS and /(z) — 0 for x < 0. The function /(z) satisfies 
sufficient conditions for the existence of a Laplace transform, but is otherwise 
arbitrary. In particular /(z) satisfies the condition that the integral from 
0 to 00 of I J{x) I exists.  Then f(x) can be written in the form 

(48) /(*)-£/"«*» «-'-*(«) 

where g(u) is a one-valued regular analytic function of « in the entire half plane 
im u> > 0. 

It follows, as is well known, that the solution in medium 1 is given by 
equation (5) where now 

(49) *,(0 - £ /" du e-'-?(^r(w) 

with$,(w) • 4, of eq. (6). The functions $,(«) have been derived for all tfmu > 0 
in the preceding section. In particular 4,(o>) may be replaced by equations 
(9)-(ll). The term 4>.(u) yields a wave which is received at a time t — d/cx and 
which duplicates in shape as a function of time the shape of the original wave 
4hi(t).  This is also a well known result, and is demonstrated by the usual means 
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of closing the contour in the upper w-plane.   We still have to examine equation 

(50) *,«) -£/_"*• *~tm V«)*,(«) 

which contains all the deviations from geometrical acoustics. From the previous 
section <t>, (w) is known to be a regular analytic function for any z, r when 6mu>0. 
Since g(u) is also analytic and regular, the contour may be deformed at will in 
the region 8m a > 0. 

Deform the contour so that it makes a small half circle about the origin. 
This is done to avoid the difficulty ktr -» 0. Assume r > 0. Then, in equation 
(50), 4>i{u>) is given by equations (17) and (43) with the contour C(fc,) defined as 
in the previu;!« section, lying within the limits of equations (45) and (46). We 
shall now show that when T < a the integral, equation (50), is zero over the 
infinite half circle at infinity in the upper emplane, im u > 0, whenever 
t — d/c, < 0. Consequently by Cauchy's theorem $,(0 = 0 whenever 
t - d/cx < 0, if T < o. 

We consider first the quarter circle at infinity 0 < arg a < T/2. For 
any fc, in this region, fc, = u/c, , c, real, the contours C(k,) can be deformed to 
the contour C" of Figure 3. In order that this deformation be possible, according 
to equations (45) and (46), it is only neces&uy that 

(51) -tan-1?-^ ^argA, + tan"1-^ < T _ tan"* ^-^ v/ r • z + h r 
and 

(52) tan"1 ^^ < arg *, + «• - tan"1 ~-r < r + tan"* Z-±^. v r " z + h r 

Equations (51) and (52) are satisfied11 provided 0 < arg fc, < r/2. 
If C, represents the contour along the quarter circle of radius p, the integral 

of equation (50), integrated over this contour, can now be written as 

(53) 

Q(t) -if   due-'-'fa) f   du     ,U     i exp (^(A + ^vT^) 

• F(u)H'»feru). 

The integral over C" in equation (53) converges uniformly as w approaches 
infinity for any « on C,. C is not a function of u and g(u>) is bounded. It follows 
that the order of integration can be interchanged for any finite p, and we need 
only show that 

limf [   du     J—^ F(u) f   dufoy'" 
(54)        *~        c'      "v^1 ~u ' 

exp \ikx(h + z)VT~^~u1)H(
0
u(klru) - 0. 

"They arc not satisfied if arg kt > r/2; this is the reason why a fine of reasoning stemming 
from equation (43) wxu adopted. 
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As p -»», Ht'ikxru) can be replaced by its asymptotic expansion, for 
any u on C". uF{u)/Vl - u* is bounded. The limit as p -»«> is therefore 
determined by the behavior of 

(55) B(u) - ikt[A{u) - cxt] 

with A(u) defined by equation (19). Letting kt - pe", it is evident that the 
limit approaches 0 exponentiaiiy as p —>» provided 

(56) —sin 6 (He A(u) - cos 9 dm A(u) + ctt sin 9 < 0 

for all 0 < 9 < x/2. But however, in Section III the contour C" was so defined 
that A(u) - d + in, where ij > 0 for aii u on C Consequently equation (56) 
is satisfied1* whenever -d + cj, < 0. On the other hand whenever — d + c,f > 0, 
there will be a continuous set of values of u on C" for which, for a finite range of 
angles 9, equation (56) is not satisfied. It follows, using equation (43), that the 
contour can be closed in the upper half <*-p!ane whenever t < d/cx , and cannot 
whenever t > d/cx. In other words $,(0 of equation (49), like the geometrically 
reflected o\.(t), begins at t — d/c, and not before. 

When T > a the contour C(fc,) can be deformed into the contours C, and 
C, of Figure 4 and finally into the contours C[ and d of Figure 5, since the asymp- 
totic limits of C[ and CJ are the same as C", so that equations (51) and (52) 
remain relevant. The integrals continue to be uniformly convergent, and the 
argument goes just as above. The integral along C{ leads to the same conclusion, 
namely that the signal is received when t = d/c, . The integral along C[ leads 
to equation (56) where in this case (Re A(u) - ra + (s+A) Vl — a*, so that 
along this path the signal is received only when 

.      ra + (z + h)Vl -a3     PA + SB  ,   AB       .... 
t ~ + —       (Figure 1). 

That no poles are crossed deforming the contours when r < a, and that the 
pole is crossed when r > a only when a < 0 < 1 and equation (30) is satisfied 
is shown just as in Sections III and IV. When $,(p) contributes, K0 ie replaced 
by its asymptotic expansion in equation (28) and it is found that$,(p) does not 
contribute until cj equals (z + A)(l - a*)1"/(I - 0*)"\ That this time lies 
between the times of appearance of the head wave and the directly reflected wave 
follows from equation (30). Because this time involves /9, no simple geometrical 
interpretation of 4>,(p) is possible. 
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